为什么 Java 中 2*(i*i) 比 2*i*i 更快?
发布于 14 天前 作者 yan 30 次浏览

(给ImportNew加星标,提高Java技能)

编译:ImportNew/唐尤华

stackoverflow.com/questions/53452713/why-is-2-i-i-faster-than-2-i-i-in-java

有人在 Stack Overflow 上提问,为什么 Java 中的  2 * (i * i)  比  2 * i * i  要快?

他做了如下测试:

运行下面这段Java代码平均需要0.50到0.55秒:

public static void main(String[] args) {
   long startTime = System.nanoTime();
   int n = 0;
   for (int i = 0; i < 1000000000; i++) {
       n += 2 * (i * i);
   }
   System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s");
   System.out.println("n = " + n);
} 

如果把2 *(i * i)替换成2 * i * i,那么运行时间在0.60到0.65秒之间。为什么出现这样的结果?

我把程序的每个版本运行了15次,两次之间交替运行。结果如下:

2*(i*i)  |  2*i*i
----------+----------
0.5183738 | 0.6246434
0.5298337 | 0.6049722
0.5308647 | 0.6603363
0.5133458 | 0.6243328
0.5003011 | 0.6541802
0.5366181 | 0.6312638
0.515149  | 0.6241105
0.5237389 | 0.627815
0.5249942 | 0.6114252
0.5641624 | 0.6781033
0.538412  | 0.6393969
0.5466744 | 0.6608845
0.531159  | 0.6201077
0.5048032 | 0.6511559
0.5232789 | 0.6544526 

2 * i * i的最快运行时间比2 * (i * i)最慢运行时间还要长。如果两者效率相当,发生这种情况的可能性小于1/2^15 * 100% = 0.00305%。

来自 rustyx 的回答,获得 1172 赞同

两种方式的字节码顺序略有不同。

2 * (i * i):

    iconst_2
    iload0
    iload0
    imul
    imul
    iadd 

对比2 * i * i:

    iconst_2
    iload0
    imul
    iload0
    imul
    iadd 

乍看之下没有什么不同,如果有的话,第二个版本看起来少了一个slot。

因此,需要更深入研究底层(JIT)。

请记住,对小循环JIT会主动展开。对2 * (i * i)可以看到实际展开了16x:

030   B2: # B2 B3 <- B1 B2  Loop: B2-B2 inner main of N18 Freq: 1e+006
030     addl    R11, RBP    # int
033     movl    RBP, R13    # spill
036     addl    RBP, #14    # int
039     imull   RBP, RBP    # int
03c     movl    R9, R13 # spill
03f     addl    R9, #13 # int
043     imull   R9, R9  # int
047     sall    RBP, #1
049     sall    R9, #1
04c     movl    R8, R13 # spill
04f     addl    R8, #15 # int
053     movl    R10, R8 # spill
056     movdl   XMM1, R8    # spill
05b     imull   R10, R8 # int
05f     movl    R8, R13 # spill
062     addl    R8, #12 # int
066     imull   R8, R8  # int
06a     sall    R10, #1
06d     movl    [rsp + #32], R10    # spill
072     sall    R8, #1
075     movl    RBX, R13    # spill
078     addl    RBX, #11    # int
07b     imull   RBX, RBX    # int
07e     movl    RCX, R13    # spill
081     addl    RCX, #10    # int
084     imull   RCX, RCX    # int
087     sall    RBX, #1
089     sall    RCX, #1
08b     movl    RDX, R13    # spill
08e     addl    RDX, #8 # int
091     imull   RDX, RDX    # int
094     movl    RDI, R13    # spill
097     addl    RDI, #7 # int
09a     imull   RDI, RDI    # int
09d     sall    RDX, #1
09f     sall    RDI, #1
0a1     movl    RAX, R13    # spill
0a4     addl    RAX, #6 # int
0a7     imull   RAX, RAX    # int
0aa     movl    RSI, R13    # spill
0ad     addl    RSI, #4 # int
0b0     imull   RSI, RSI    # int
0b3     sall    RAX, #1
0b5     sall    RSI, #1
0b7     movl    R10, R13    # spill
0ba     addl    R10, #2 # int
0be     imull   R10, R10    # int
0c2     movl    R14, R13    # spill
0c5     incl    R14 # int
0c8     imull   R14, R14    # int
0cc     sall    R10, #1
0cf     sall    R14, #1
0d2     addl    R14, R11    # int
0d5     addl    R14, R10    # int
0d8     movl    R10, R13    # spill
0db     addl    R10, #3 # int
0df     imull   R10, R10    # int
0e3     movl    R11, R13    # spill
0e6     addl    R11, #5 # int
0ea     imull   R11, R11    # int
0ee     sall    R10, #1
0f1     addl    R10, R14    # int
0f4     addl    R10, RSI    # int
0f7     sall    R11, #1
0fa     addl    R11, R10    # int
0fd     addl    R11, RAX    # int
100     addl    R11, RDI    # int
103     addl    R11, RDX    # int
106     movl    R10, R13    # spill
109     addl    R10, #9 # int
10d     imull   R10, R10    # int
111     sall    R10, #1
114     addl    R10, R11    # int
117     addl    R10, RCX    # int
11a     addl    R10, RBX    # int
11d     addl    R10, R8 # int
120     addl    R9, R10 # int
123     addl    RBP, R9 # int
126     addl    RBP, [RSP + #32 (32-bit)]   # int
12a     addl    R13, #16    # int
12e     movl    R11, R13    # spill
131     imull   R11, R13    # int
135     sall    R11, #1
138     cmpl    R13, #999999985
13f     jl     B2   # loop end  P=1.000000 C=6554623.000000 

从上面的代码可以看到,有1个寄存器被“spill”到了整个堆栈。

对于2 * i * i版本:

05a   B3: # B2 B4 <- B1 B2  Loop: B3-B2 inner main of N18 Freq: 1e+006
05a     addl    RBX, R11    # int
05d     movl    [rsp + #32], RBX    # spill
061     movl    R11, R8 # spill
064     addl    R11, #15    # int
068     movl    [rsp + #36], R11    # spill
06d     movl    R11, R8 # spill
070     addl    R11, #14    # int
074     movl    R10, R9 # spill
077     addl    R10, #16    # int
07b     movdl   XMM2, R10   # spill
080     movl    RCX, R9 # spill
083     addl    RCX, #14    # int
086     movdl   XMM1, RCX   # spill
08a     movl    R10, R9 # spill
08d     addl    R10, #12    # int
091     movdl   XMM4, R10   # spill
096     movl    RCX, R9 # spill
099     addl    RCX, #10    # int
09c     movdl   XMM6, RCX   # spill
0a0     movl    RBX, R9 # spill
0a3     addl    RBX, #8 # int
0a6     movl    RCX, R9 # spill
0a9     addl    RCX, #6 # int
0ac     movl    RDX, R9 # spill
0af     addl    RDX, #4 # int
0b2     addl    R9, #2  # int
0b6     movl    R10, R14    # spill
0b9     addl    R10, #22    # int
0bd     movdl   XMM3, R10   # spill
0c2     movl    RDI, R14    # spill
0c5     addl    RDI, #20    # int
0c8     movl    RAX, R14    # spill
0cb     addl    RAX, #32    # int
0ce     movl    RSI, R14    # spill
0d1     addl    RSI, #18    # int
0d4     movl    R13, R14    # spill
0d7     addl    R13, #24    # int
0db     movl    R10, R14    # spill
0de     addl    R10, #26    # int
0e2     movl    [rsp + #40], R10    # spill
0e7     movl    RBP, R14    # spill
0ea     addl    RBP, #28    # int
0ed     imull   RBP, R11    # int
0f1     addl    R14, #30    # int
0f5     imull   R14, [RSP + #36 (32-bit)]   # int
0fb     movl    R10, R8 # spill
0fe     addl    R10, #11    # int
102     movdl   R11, XMM3   # spill
107     imull   R11, R10    # int
10b     movl    [rsp + #44], R11    # spill
110     movl    R10, R8 # spill
113     addl    R10, #10    # int
117     imull   RDI, R10    # int
11b     movl    R11, R8 # spill
11e     addl    R11, #8 # int
122     movdl   R10, XMM2   # spill
127     imull   R10, R11    # int
12b     movl    [rsp + #48], R10    # spill
130     movl    R10, R8 # spill
133     addl    R10, #7 # int
137     movdl   R11, XMM1   # spill
13c     imull   R11, R10    # int
140     movl    [rsp + #52], R11    # spill
145     movl    R11, R8 # spill
148     addl    R11, #6 # int
14c     movdl   R10, XMM4   # spill
151     imull   R10, R11    # int
155     movl    [rsp + #56], R10    # spill
15a     movl    R10, R8 # spill
15d     addl    R10, #5 # int
161     movdl   R11, XMM6   # spill
166     imull   R11, R10    # int
16a     movl    [rsp + #60], R11    # spill
16f     movl    R11, R8 # spill
172     addl    R11, #4 # int
176     imull   RBX, R11    # int
17a     movl    R11, R8 # spill
17d     addl    R11, #3 # int
181     imull   RCX, R11    # int
185     movl    R10, R8 # spill
188     addl    R10, #2 # int
18c     imull   RDX, R10    # int
190     movl    R11, R8 # spill
193     incl    R11 # int
196     imull   R9, R11 # int
19a     addl    R9, [RSP + #32 (32-bit)]    # int
19f     addl    R9, RDX # int
1a2     addl    R9, RCX # int
1a5     addl    R9, RBX # int
1a8     addl    R9, [RSP + #60 (32-bit)]    # int
1ad     addl    R9, [RSP + #56 (32-bit)]    # int
1b2     addl    R9, [RSP + #52 (32-bit)]    # int
1b7     addl    R9, [RSP + #48 (32-bit)]    # int
1bc     movl    R10, R8 # spill
1bf     addl    R10, #9 # int
1c3     imull   R10, RSI    # int
1c7     addl    R10, R9 # int
1ca     addl    R10, RDI    # int
1cd     addl    R10, [RSP + #44 (32-bit)]   # int
1d2     movl    R11, R8 # spill
1d5     addl    R11, #12    # int
1d9     imull   R13, R11    # int
1dd     addl    R13, R10    # int
1e0     movl    R10, R8 # spill
1e3     addl    R10, #13    # int
1e7     imull   R10, [RSP + #40 (32-bit)]   # int
1ed     addl    R10, R13    # int
1f0     addl    RBP, R10    # int
1f3     addl    R14, RBP    # int
1f6     movl    R10, R8 # spill
1f9     addl    R10, #16    # int
1fd     cmpl    R10, #999999985
204     jl     B2   # loop end  P=1.000000 C=7419903.000000 

出于保存中间结果的需要,这里出现了更多的“spill”及堆栈[RSP + …]访问。

问题的答案很简单:2 *(i * i)比2 * i * i更快,因为针对前者JIT生成的汇编代码更优化。

但是,显然这两个版本都不够好。由于x86-64 CPU都至少支持SSE2,因此循环可以从向量化中受益。

因此,这是optimizer的问题:通常循环过度展开会带来问题,错失其他优化机会。

实际上,现代x86-64 CPU会把指令进一步细分为微操作(µops)。循环优化可以借助寄存器重命名、µop缓存和循环缓冲区等众多特性,而不是仅仅做一次展开。根据Agner Fog的优化指南:

如果平均指令长度超过4字节,由于µop缓存而导致的性能提升会非常可观。可以考虑下列方法优化µop缓存:

  • 确保关键循环足够小以适应µop缓存。
  • 将最关键的循环条目和功能条目以32对齐。
  • 避免不必要的循环展开。
  • 避免使用需要额外加载时间的指令:…

考虑到加载时间:即使命中最快的L1D也要花费4个周期,需要一个额外的寄存器和µop。只要对存储器访问,哪怕几次也会损害循环的性能。

再考虑矢量化方案:要了解优化能达到多快,可以使用GCC编译类似的C应用程序,直接对其进行矢量化(下面展示了AVX2、SSE2结果):

 vmovdqa ymm0, YMMWORD PTR .LC0[rip]
 vmovdqa ymm3, YMMWORD PTR .LC1[rip]
 xor eax, eax
 vpxor xmm2, xmm2, xmm2
.L2:
 vpmulld ymm1, ymm0, ymm0
 inc eax
 vpaddd ymm0, ymm0, ymm3
 vpslld ymm1, ymm1, 1
 vpaddd ymm2, ymm2, ymm1
 cmp eax, 125000000      ; 8 calculations per iteration
 jne .L2
 vmovdqa xmm0, xmm2
 vextracti128 xmm2, ymm2, 1
 vpaddd xmm2, xmm0, xmm2
 vpsrldq xmm0, xmm2, 8
 vpaddd xmm0, xmm2, xmm0
 vpsrldq xmm1, xmm0, 4
 vpaddd xmm0, xmm0, xmm1
 vmovd eax, xmm0
 vzeroupper 

运行时间:

  • SSE:0.24 s,大约快2倍。
  • AVX:0.15 s,大约快3倍。
  • AVX2:0.08 s,大约快5倍。
  • 要输出JIT生成的程序集,请获取JVM调试版本,并使用-XX:+ PrintOptoAssembly运行。
  • C程序版本使用-fwrapv标志进行编译,该标志使GCC可以将带符号整数溢出视为二进制补码。

推荐阅读

(点击标题可跳转阅读)

Java 面试题:反转不可变列表

JDK 13 新特性详解

Java 模糊测试

看完本文有收获?请转发分享给更多人

关注「ImportNew」,提升Java技能

好文章,我在看❤️

回到顶部